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Estimated success of brute force attacks for various
key sizes

56 bits – 1 million-keys/sec (desktop PC) – 2,283 years
56 bits – 1 billion-keys/sec (medium corporate) – 2.3 years
56 bits – 100 billion-keys/sec (nations) – 8 days
128 bits – 1 bilion-keys/sec (medium corporate) – 1022 yrs
128 bits – 1018 keys/sec (large corp.) – 10,783 billion yrs
128 bits – 1032 keys/sec (nations; quantum) – 108 million
yrs
192 bits – 109 keys/sec (medium corp.) – 2 · 1041 years
192 bits – 1018 keys/sec (large corp.) – 2 · 1032 years
192 bits – 1023 keys/sec (nations; quantum) – 2 · 1027 yrs
256 bits – 1023 keys/sec (nations; quantum) – 3.7 · 1046 yrs
256 bits – 1032 keys/sec (nations; quantum) – 3.7 · 1037 yrs



The objects of the investigation: (Generalized)
Boolean functions I

Boolean function f : Fn
2 → F2

Generalized Boolean function f : Vn → Zq (q ≥ 2); its set
GBq

n; when q = 2, Bn; Zq is the ring of integers modulo q.
If 2k−1 < q ≤ 2k , for any f ∈ GBq

n we associate a unique
sequence of Boolean fcts. ai ∈ Bn (0 ≤ i ≤ k − 1) s.t.

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), ∀x ∈ Vn.

For f : Vn → Zq in GBq
n we define the generalized

Walsh-Hadamard transform to be the complex valued
function

H(q)
f (u) =

∑
x∈Vn

ζ
f (x)
q (−1)〈u,x〉,

where ζq = e
2πi
q and 〈u,x〉 denotes a (nondegenerate)

inner product on Vn (like u · x on Fn
2, or Tr(ux) on F2n );



The objects of the investigation: (Generalized)
Boolean functions II

For q = 2, we obtain the usual Walsh-Hadamard transform

Wf (u) =
∑
x∈Vn

(−1)f (x)(−1)〈u,x〉.

A function f : Vn → Zq is called generalized bent (gbent) if
|Hf (u)| = 2n/2 for all u ∈ Vn.

It generalizes bents f for which |Wf (u)| = 2n/2, ∀u ∈ Vn;
equivalently, Nf = 2n−1 ± 2

n
2−1 (distance from the set of all

affine functions). These only exists for even n.



Counting bents I

Bents are hard to construct and/or count:
(2n/2)! 22n/2 ≤ # bent ≤ 22n−1+ 1

2 ( n
n/2) or the more

complicated Carlet-Klapper (2002) bound
Agievich (bent rectangles, ’07); Climent et al. (’08,’14)
iterative constructions; better bounds for n = 12,14 but
become worse for n larger;
Natalia (Tokareva) “hypothesizes” that the lower bound
might be: 22n−2+ 1

4 ( n
n/2), or perhaps asymptotically,

# bent ∼ 22n−c+d( n
n/2),

for some constants c,d , with 1 ≤ c ≤ 2.



Counting bents II

n lower bound # bent upper bound # Boolean
2 8 8 8 16
4 384 896 2,048 65,536
6 223.3 232.3 238 264

8 295.6 2106.291 2129.2 2256

10 2262.16 ? 2612 21024

Preneel (1990), Meng et al. (2006): B6 = 5425430528

Langevin et al. (Dec. 2007):
B8 = 99270589265934370305785861242880 ∼ 2106.291



Applications of (generalized) Boolean functions

S-Boxes for block ciphers. e.g. DES, AES
’Combiners’ or ’filters’ for Linear Feedback Shift Registers
(LFSRs) based stream ciphers: the ’Grain’ family of ciphers
(eSTREAM project in Europe), Bluetooth E0, E1, etc.
Coding theory; e.g. Reed-Muller code
Spread spectrum communication; e.g.,
4G-CDMA=3G-CDMA+OFDM; MC-CDMA=OFDM+CDMA,
etc.
In MC-CDMA systems, the symbol is spread by a user
specific spreading sequence, and converted into a parallel
data stream, which is then transmitted over multiple
carriers.



Peak-to-Power Ratio – System Model I

Let n = 2m and Hn be the canonical Walsh-Hadamard
matrix of dimension 2n; ω = exp (2πı/2h) be a primitive
2h-th root of unity in C, h ∈ Z+;
Given a word c = (c1, . . . , cn), ci ∈ Z2h , the transmitted
MC-CDMA signal can be modeled as

Sc(t) =
n−1∑
j=1

ωcj (Hn)j,t ,0 ≤ t < n,

(that is, cj is used to modulate the j-th row of Hn, and the
transmitted signal is the sum of these modulated
sequences).



Peak-to-Power Ratio – System Model II

The PAPR (peak-to-average-power ratio) of a codeword c
(and code C) is defined by

PAPR(c) =
1
n

max
0≤t<n

|Sc(t)|2; PAPR(C) = max
c∈C

PAPR(c).



Peak-to-Power Ratio – System Model III

A major problem to overcome: minimize peak-to-power
ratio (PAPR);

Theorem (Schmidt (2009))

Let f : Fn
2 → Z2h be a generalized Boolean function. Then,

PAPR(c) =
1
2n max

u∈Zn
2

|H(2h)
f (u)|2.

In particular, the PAPR of f is 1 if and only if f is gbent.



Existence Results: from Fn
2 → Z2k (the set GB2k

n )

Subsets of {S., Gangopadhyay, Martinsen, Singh, Meidl,
Mesnager, Pott, Hodžić, Pasalic, Tang, Xiang, Qi, Feng}.:
analyzed and constructed large classes of generalized
bents; we now have a complete characterization of gbents
in terms of their components.

Theorem (2016)

Let f : F2n → Z2k , n even. Then f is a gbent function given as
f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x) if and only if, for
each c ∈ Fk−1

2 , the Boolean function fc defined as

fc(x) = c0a0(x)⊕c1a1(x)⊕ · · ·⊕ck−2ak−2(x)⊕ak−1(x)

is a bent function, such thatWfc(a) = (−1)c·g(a)+s(a)2
n
2 , for

some g : F2n → Z2k−1 , s : F2n → F2.



Differential properties of generalized Boolean
functions I

u ∈ Vn is a linear structure of f ∈ GBq
n if the derivative of f

wrt u is constant, that is, f (x⊕ u)− f (x) = c ∈ Zq constant,
for all x ∈ Vn.

Let Sf = {x ∈ Vn |Hf (x) 6= 0} 6= ∅ (gen.WH support)

Theorem (2017)

Let f ∈ GB2k

n . Then a vector u is a linear structure for f iff
ζ f (u)−f (0) = (−1)u·w, for all w ∈ Sf . As a consequence, if u is a
linear structure for f , then f (u)− f (0) ∈ {0,2k−1}.



Differential properties of generalized Boolean
functions II

Corollary: Let f ∈ GB2k

n . If u is a linear structure for f , then
either Sf ⊆ u⊥, or Sf ⊆ u⊥ (the set complement of u⊥).

Theorem (2017)

Let f ∈ GB2k

n , k ≥ 2, be given by f (x) =
∑k−1

i=0 2iai(x), ai ∈ Bn.
Then u ∈ Vn is a linear structure for f iff u is a linear structure
for ai , i ≥ 0, such that ai(u) = ai(0),0 ≤ i < k − 1.



Differential properties of generalized Boolean
functions III

Using the method of Lechner (’71) and Lai (’95) one can
simplify the ANF of a function admitting linear structures.

Theorem (2017)

Let f ∈ GB2k

n and 1 ≤ dim LS2k (f ) = r . Then, ∃ an invertible
n × n matrix A such that

f ((x1, . . . , xn) · A) =
r∑

i=1

αixi + g(xr+1, . . . , xn),

where αi ∈ Z2k and g ∈ GB2k

n−r has no linear structures.



Differential properties of generalized Boolean
functions IV

We say that f ∈ GB2k

n satisfies the (generalized) strict
avalanche criterion if the autocorrelation
Cf (e) =

∑
x∈Vn

ζ f (x)−f (x⊕e) = 0, for all e of weight 1.

Theorem (2017)

Let f ∈ GB2k

n , and A(w)
j = {x|f (x⊕w)− f (x) = j}. Then f

satisfies the SAC iff |A(e)
j | = |A(e)

j+2k−1 |, for all 0 ≤ j ≤ 2k−1 − 1,
wt(e) = 1. Also, f is gbent if and only if
|A(0)

0 | = 2n, |A(0)
j | = 0, |A(w)

j | = |A(w)

j+2k−1 |,
0 ≤ j ≤ 2k−1 − 1,w 6= 0.



Correlation Immune Functions I

A generalized Boolean function f ∈ GBq
n is said to be

correlation immune of order t , 1 ≤ t ≤ n if for any fixed
subset of t variables the probability that, given the value of
f (x), the t variables have any fixed set of values, is 2−t .

An m × n array OA(m,n, s, t) with entries from a set of s
elements is called an orthogonal array of size m with n
constraints, s levels, strength t, and index r , if any set of t
columns of the array contain all st possible row vectors
exactly r times.



Correlation Immune Functions II

As expected, there’s a connection with orthogonal arrays;

Theorem (2017)

Every order t correlation immune generalized Boolean function,
f ∈ GBq

n, “involves” a partition of Vn, consisting of q binary
orthogonal arrays, each of strength t.

Nice connections and constructions of SAC, CI, dependent
upon labeling of the hypercube are in (my student) Thor
Martinsen’s PhD thesis.



Correlation Immune Functions III

Table: A CI(1) Generalized Boolean Function, f ∈ GB4
4

F4
2 f

0000 0
0001 3
0010 2
0011 1
0100 1
0101 2
0110 3
0111 0
1000 2
1001 1
1010 0
1011 3
1100 3
1101 0
1110 1
1111 2



Trade-offs for generalized Boolean functions I

Are there symmetric and gbent generalized Boolean
functions (k > 1)?
Theorem (2017): NO! (proof based upon Savicky’s
symmetric bents and the recent work on gbents)
***************************************
What about balanced and symmetric generalized Boolean
functions (k > 1)?
Theorem (2017): NO! (hard to show – dio. eq.)
Recall X (d ,n) =

∑
i1<i2<···<id xi1xi2 · · · xid :

Theorem (Cusick-Li-S., 2009)

If t , ` are positive integers, then X (2t ,2t+1`− 1) is balanced.



Trade-offs for generalized Boolean functions II

We conjectured that these are the only balanced
elementary symmetric (many cases covered, but still
open);
(Cusick-Li-S. 2009):

If d = 2t + 1, n = 2t+1`, then wt(X (2t + 1,2t+1`)) = 2n−2;
If d = 2t , X (d ,n) is balanced iff n = 2t+1`− 1, t , ` ∈ Z+;
If d = 2t+1`+ r − 1, t , ` > 0, 0 ≤ r ≤ 2t+1, 2t < d ≤ 2t+1 − 2
even, then X (d ,n) is not balanced;

(Ou–Zhao 2012): Let
d = 2t+w (2s+1 − 1),n = 2t+w+1(2s+1 − 1) + 2tq + m,
m ∈ {−1,0}. Under some assumption on t ,w , s,q, then
X (d ,n) is not balanced.



Trade-offs for generalized Boolean functions III

(Castro-Medina 2011) & (Guo-Gao-Zhao 2015):
Conjecture 1 is true if n is large enough (dependent upon
the degree), n > −2 (log2 cos(π/2r ))−1, where
2r−1 ≤ d < 2r . In particular, if d is not a power of 2,
X (d ,n) is not balanced for large n.

(Su-Tang-Pott 2013): If d = 2t , Conjecture 2 holds in most
cases, that is, wt(X (d ,n)) < 2n−1;

(Gao-Liu- Zhang 2015): If n = 2t+1`− 1, ` odd, 2t+1 6 |d ,
X (d ,n) balanced iff d = 2k , 1 ≤ k ≤ t ;

(Castro-Gonzales-Medina 2015): More open cases are
covered where Conjecture 1 holds.



Bisecting binomial coefficients I

The existence of balanced elementary symmetric
polynomials is related to the problem of bisecting binomial
coefficients, that is, solutions of

n∑
i=0

xi

(
n
i

)
= 0, xi ∈ {−1,1}. (1)

Trivial Solutions: Obviously, if n is even, then
±(1,−1, . . . ,−1,1) are two solutions of (1). If n is odd,
then (δ0, . . . , δ n−1

2
,−δ n−1

2 −1, . . . ,−δ0) are 2
n+1

2 solutions of
(1).

Research Question (Open for the past 25 years)

Find all nontrivial solutions of (1).



Bisecting binomial coefficients II

There are sporadic cases when non-trivial solutions do
appear: e.g., if n ≡ 2 (mod 6), since( n

(n+1)/3

)
=
( n

(n+1)/3−1

)
+
( n

n−((n+1)/3−1)

)
, nontrivial

solutions always appear.

Apart from this, all that was known about the bisection of
binomial coefficients was mostly computational.

(Mitchell, 1990): found the nontrivial solutions for n = 8,13;

(Cusick & Li, 2005): found all solutions of (1) when n ≤ 28;
nontrivial solutions exist iff n = 8,13,14,20,24,26.

(Ionascu-Martinsen-S., 2017): found all nontrivial solutions
for n ≤ 51.



Our approach on the problem I

The binomial coefficients bisection can be thought of as a
subset sum problem. The view we take is the following: a
binomial coefficients bisection

∑
i∈I
(n

i

)
=
∑

i∈Ī
(n

i

)
will

generate a solution to the Boolean equation

n∑
i=0

xi

(
n
i

)
= 2n−1, xi ∈ {0,1}

by taking xi = 1 for i ∈ I and xi = 0, for i ∈ Ī. Certainly, the
reciprocal is true, as well, and so, we have an equivalence
between these two problems.



Our approach on the problem II

In general, given a set of positive integers A = {a1, . . . ,aN}
and b ≤ 1

2
∑

i ai , b ∈ N, one investigates the Boolean
equation

N∑
i=1

xiai = b, xi ∈ {0,1}.

The advantage of our approach is that these equations
were studied before by analytical number theory methods
and much (well, some) is known.
In general, these problem are well known to be
NP-complete [Garey–Johnson, 1979] and have many
applications in cryptography, such as the Merkle-Hellman
cryptosystem (1978).



Our approach on the problem III

The density of S = {a1, . . . ,aN} is d(S) =
N

log2

(
max

1≤i≤N
ai

) ;

in terms of knapsack cryptosystems,

d(S) =
bit size of the plaintext

average bit size of the ciphertext
For Pn =

{(n
0

)
,
(n

1

)
, . . . ,

(n
n

)}
, using

4bn/2c

2bn/2c+1 ≤
( n
bn/2c

)
≤ 4bn/2c, the density becomes

n + 1
2bn/2c − log2(2bn/2c+ 1)

≤ d(Pn) =
n + 1

log2(maxi
(n

i

)
)

=
n + 1

log2
( n
bn/2c

) ≤ n + 1
2bn/2c

,

and so,
d(Pn)→ 1, as n→∞.



Our approach on the problem IV

Lagarias and Odlyzko (1985) showed that almost all the
subset sum problem with density d < 0.6463 . . . can be
solved in polynomial time with a single call to an oracle that
can find (in polynomial time with high probability) the
shortest vector in a special lattice. Coster et al. (1992)
improved the bound to d < 0.9408 . . ..

Since for binomial coefficients, the density is d = 1 (as
n→∞), none of these methods are applicable.



The underlying method I

We recall here the following important result of
Freiman (1980) (see also [Buzytsky (1982), Chaimovich,
Freiman, Galil (1989)]).

Theorem (Freiman)

Let A = {a1,a2, . . . ,aN} and b ≤ 1
2
∑N

i=1 ai . The number of
Boolean solutions for the equation

N∑
i=1

aixi = b, xi ∈ {0,1}

is precisely
∫ 1

0
e−2πixb

N∏
j=1

(
1 + e2πixaj

)
d x.



The underlying method II

Applying Freiman’s paradigm to the bisection of bin. coeff.:

Theorem (Ionascu-Martinsen-S., 2017)
The number of binomial coefficients bisections for fixed n is
exactly

Jn =

∫ 1

0
e−2nπix

n∏
j=0

(
1 + e2πix

(
n
j

))
d x = 2n+1

∫ 1

0

n∏
j=0

cos

(
πx
(n

j

))
d x .

We constructed infinite families with nontrivial, as well as
infinite families with only trivial bisections.
As a by-product, we got for free two conjectures of Cusick
et al. (’05), so there are only four symmetric SAC(k )
functions for infinitely many n.

Go2Graphs Go2Tks



Visualizing Boolean functions

Can one visualize Boolean functions?
Yes, in several ways, but it becomes very hard to obtain
results just based upon graph theoretical tools.
Nagy graphs, Cayley graphs, etc.
E.g.: (undirected) Cayley graph – vertices are points of Fn

2
and two points x,y are connected by an edge iff
f (x⊕ y) = 1.



Cayley graph of first row of S-box 1 of DES

Go2Tks



Further Restrictions: invariance under a group of
transformations

On F6
2, there are 220 cubic homogeneous B.f.

Among these, ∃ 30 homogeneous bent B.f. equivalent to
Rothaus (’76): x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6

Qu-Seberry-Pieprzyk (2000): There are > 30n(6n
6

)
homogeneous bent B.f. on F6n

2 .
Charnes-Rötteler-Beth (2002):
The bent functions found by Qu et al. (’00) arise as
invariants under the action of the symmetric group on four
letters;

Definition (Nagy Graph)

Γ(n,k): vertices – the
(n

k

)
unordered subsets of size k of

{1, . . . ,n}; vertices are joined by an edge whenever the
corresponding k -sets intersect in a subset of size one.



Nagy graph Γ(6,3)
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Cliques and Homogeneous Bent Functions

A clique in an undirected graph Γ is a complete subgraph
(maximal: not contained in a bigger one); the clique
problem) is NP-complete.
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{2,4,5}{1,2,3}

{3,4,6}{1,5,6}

Theorem (Charnes-Rötteler-Beth (2002))

The thirty homogeneous bent functions in six variables listed by
Qu et al. are in one to one correspondence with the
complements of the 30 (maximal) cliques of Γ(6,3).



Open questions

It is unknown whether there are quartic/quintic/etc.
homogeneous bent functions.
I propose to look at the complements of the maximal
cliques of the Nagy graph Γ(10,4), Γ(12,4).
Do the same for Γ(12,5), Γ(14,5).

Research Question

Can one find efficiently a (all) clique(s) in Γ(2n,k), k < n?

Not a trivial matter, I believe: for instance, Γ(10,4) has 210
vertices; Γ(12,5) has 792 vertices;



Having some fun: using a gen. Boolean as a combiner



Theorem (Pante Stanica: http://faculty/nps.edu/pstanica)

Thank you for your attention!

Proof.

None required!


