Boolean Functions and their Applications, Selmer
Center, University of Bergen, Norway; July 3-8, 2017

(Generalized) Boolean functions:
invariance under some groups of
transformations and differential properties

Pantelimon (Pante) Stanica
(Some joint work done with T. Martinsen, W. Meidl, A. Pott)

Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943, USA; pstanica@nps.edu

iE NAVAL o ; e~ ‘,,
POSTGRADUATE : : : : W{@}W

SCHOOL



Estimated success of brute force attacks for various

key sizes

m 56 bits — 1 million-keys/sec (desktop PC) — 2,283 years

m 56 bits — 1 billion-keys/sec (medium corporate) — 2.3 years

m 56 bits — 100 billion-keys/sec (nations) — 8 days

m 128 bits — 1 bilion-keys/sec (medium corporate) — 1022 yrs

i m 128 bits — 10'8 keys/sec (large corp.) — 10, 783 billion yrs

m 128 bits — 1032 keys/sec (nations; quantum) — 108 million
yrs

m 192 bits — 10° keys/sec (medium corp.) — 2 - 10*! years

m 192 bits — 10" keys/sec (large corp.) — 2 - 1032 years

m 192 bits — 10?3 keys/sec (nations; quantum) — 2 - 10?7 yrs

m 256 bits — 10?3 keys/sec (nations; quantum) — 3.7 - 104 yrs

m 256 bits — 1032 keys/sec (nations; quantum) — 3.7 - 10%7 yrs
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The objects of the investigation: (Generalized)

Boolean functions |

m Boolean function f : F — F»

m Generalized Boolean function f : V, — Zq (q > 2); its set
GBJ; when q = 2, Bp; Zg is the ring of integers modulo g.

m If 2k < g < 2k forany f € GB? we associate a unique
sequence of Boolean fcts. aj € B, (0 <i< k—1) s.t.

f(X) = ag(X) + 2a4(X) + - - 4+ 2K Ta_1(x),¥x € V.

m For f: V, — Zgq in GB we define the generalized
Walsh-Hadamard transform to be the complex valued

function ;
X
" HD ) = 3 M (—1)wx),
Ta".,;,!‘ xeVp
i where ¢, = e%"’ and (u, x) denotes a (nondegenerate) fv
ki

inner product on Vj, (like u - x on FJ, or Tr(ux) on Fan);



The objects of the investigation: (Generalized)

Boolean functions Il

m For g = 2, we obtain the usual Walsh-Hadamard transform

We(u) = Z (-1 )f(x)(_-] )(U,X)‘

XeVp

m A function f: V, — Zq is called generalized bent (gbent) if
|Hs(u)| =272 for allu € V.

m It generalizes bents f for which |[Wy(u)| = 2M2 e Vp;
equivalently, Ny = 271 + 22— (distance from the set of all
affine functions). These only exists for even n.
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Counting bents |
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m Bents are hard to construct_and/or count:
(27/2)122"% < g pent < 22" *2(w2) or the more
complicated Carlet-Klapper (2002) bound

m Agievich (bent rectangles, '07); Climent et al. ('08,14)
iterative constructions; better bounds for n = 12, 14 but
become worse for n larger;

m Natalia (Tokareva) “hypothesizes” that the lower bound
n— 1i( n
might be: 22 +4(s2)  or perhaps asymptotically,

#bent ~ 22" “+d2)

for some constants ¢, d, with 1 < ¢ < 2.
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Counting bents Il
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n | lowerbound | #bent | upper bound | # Boolean
2 8 8 8 16

4 384 896 2,048 65,536
6 223.3 232.3 238 264

8 295.6 2106.291 2129.2 2?56
10 2262.16 ? 2612 21024

m Preneel (1990), Meng et al. (2006): Bg = 5425430528

m Langevin et al. (Dec. 2007):
Bg = 99270589265934370305785861242880 ~ 2106-291



Applications of (generalized) Boolean functions

m S-Boxes for block ciphers. e.g. DES, AES

m 'Combiners’ or *filters’ for Linear Feedback Shift Registers
= (LFSRs) based stream ciphers: the 'Grain’ family of ciphers
| (eSTREAM project in Europe), Bluetooth EO, E1, etc.

m Coding theory; e.g. Reed-Muller code

m Spread spectrum communication; e.g.,
4G-CDMA=3G-CDMA+OFDM; MC-CDMA=OFDM+CDMA,
etc.

m In MC-CDMA systems, the symbol is spread by a user
specific spreading sequence, and converted into a parallel
data stream, which is then transmitted over multiple
carriers.
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Peak-to-Power Ratio — System Model |

m Let n=2" and H, be the canonical Walsh-Hadamard
matrix of dimension 2; w = exp (2m2/2") be a primitive

= 2/-th root of unity in C, h € Z7;
el
| m Given aword ¢ = (¢y,...,Cn), Ci € Zon, the transmitted
Soe MC-CDMA signal can be modeled as
n—1

Se(t) =D wi(Hp)j, 0 < t <,
j=1

(that is, ¢; is used to modulate the j-th row of Hj, and the
transmitted signal is the sum of these modulated
sequences). (’
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Peak-to-Power Ratio — System Model Il

m The PAPR (peak-to-average-power ratio) of a codeword ¢
(and code C) is defined by

PAPR(c) = %0@% 1S:(8)|?;  PAPR(C) = max PAPR(c).

he transmit signals in an orthogonal frequency-division multiplexing (OFDM) system can have high
peak values in the time domain since many subcarrier components are added via an inverse fast
Fourier transformation (IFFT) operation. As a result, OFDM systems are known to have a high peak-
o-average power ratio (PAPR) when compared to single-carrier systems. In fact, the high PAPR is
one of the most detrimental aspects in an OFDM system as it decreases the signal-to-quantization
oise ratio (SQNR) of the analog-digital convertor (ADC) and digital-analog convertor (DAC) while
degrading the efficiency of the power amplifier in the transmitter. As a side note, the PAPR problem is
ore of a concern in the uplink since the efficiency of the power amplifier is critical due to the limited
power in a mobile terminal | GOOGLE (Nutagq)
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Peak-to-Power Ratio — System Model IlI

m A major problem to overcome: minimize peak-to-power
ratio (PAPR);

Theorem (Schmidt (2009))

. Letf:F] — Zon be a generalized Boolean function. Then,
2 2

1 oh
PAPR(c) = 5 max HE) ()P,
2

In particular, the PAPR of f is 1 if and only if f is gbent.




Existence Results: from F, — Zo« (the set gB%k)

m Subsets of {S., Gangopadhyay, Martinsen, Singh, Meidl,
Mesnager, Pott, HodzZi¢, Pasalic, Tang, Xiang, Qi, Feng}.:
analyzed and constructed large classes of generalized
bents; we now have a complete characterization of gbents
in terms of their components.

"l Theorem (2016)

Letf:Fon — Zok, n even. Then f is a gbent function given as
f(x) = ag(x) +2a4(x) + - - + 2k~ ax_4(x) if and only if, for
eachc ¢ IF’2“1 , the Boolean function f, defined as

fe(X) = coap(X)Bcrar (X)® - - - BCk_oak—_2(X)Bak—_1(x)

is a bent function, such that Wy (a) = (—1)¢9@+s@23  for
some g : Fon — Zok—1, S : Fon — Fo.




Differential properties of generalized Boolean

functions |

| muceV,isalinearstructure of f € GBY if the derivative of f
| wrt u is constant, that is, f(x @ u) — f(X) = ¢ € Zq constant,
for all x € V.

m Let Sf = {x € V| Hs(x) # 0} # 0 (gen.WH support)
Theorem (2017)

Letf e gB"f,k. Then a vector u is a linear structure for f iff
¢fW=10) — (—1)uW forallw € S;. As a consequence, ifu is a
linear structure for f, then f(u) — f(0) € {0,2¢ 1},




Differential properties of generalized Boolean

functions Il

m Corollary: Letf € gB?,k . Ifuis alinear structure for f, then
either Sy C ut, or Sy C u' (the set complement of u*).

Theorem (2017)

| LetfegB2, k> 2, be given by f(x) = Y5 2a(x), a € By,
Thenu € V, is a linear structure for f iffu is a linear structure
for aj, i > 0, such that aj(u) = a;(0),0 < i< k—1.




Differential properties of generalized Boolean

functions IlI

m Using the method of Lechner ('71) and Lai ("95) one can
simplify the ANF of a function admitting linear structures.

Theorem (2017)

Letf e gB?,k and 1 < dim LSy«(f) = r. Then, 3 an invertible
n x n matrix A such that

r
(X1, Xn) - A) = Y iXi + 9(Xrs1, - -, X))

i=1

k g
where a; € Zox and g € GB2 . has no linear structures.




Differential properties of generalized Boolean

functions IV

m We say that f € gB?,k satisfies the (generalized) strict
avalanche criterion if the autocorrelation

| Cr(e) = Y yey, ('®-f(x¥8) — 0, for all e of weight 1.

Theorem (2017)

Letfe GB3, and A" = {x|f(x ®w) — f(x) = j}. Then f
satisfies the SAC iff |A(e)| = Ay |, forall0 < j < 2k-1 1,
wi(e) =1. Also, f is gbent if and on/y if

a3 =2m, |49 = 0, |A")| = |A), ],

0<j<2k1_1 w#0.




Correlation Immune Functions |

m A generalized Boolean function f € GBY is said to be
correlation immune of order t, 1 < t < nif for any fixed
subset of t variables the probability that, given the value of

fee f(x), the t variables have any fixed set of values, is 2.

m An m x narray OA(m, n, s, t) with entries from a set of s
elements is called an orthogonal array of size m with n
constraints, s levels, strength t, and index r, if any set of t
columns of the array contain all s! possible row vectors
exactly r times.
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Correlation Immune Functions I

m As expected, there’s a connection with orthogonal arrays;

M Theorem (2017)

5 Every order t correlation immune generalized Boolean function,
£ f € GBY, “involves” a partition of V,,, consisting of q binary
; orthogonal arrays, each of strength t.

m Nice connections and constructions of SAC, Cl, dependent

upon labeling of the hypercube are in (my student) Thor
Martinsen’s PhD thesis.




Correlation Immune Functions Il

Table: A Cl(1) Generalized Boolean Function, f € gBi

F;
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Trade-offs for generalized Boolean functions |

m Are there symmetric and gbent generalized Boolean
functions (k > 1)?

= m Theorem (2017): NO! (proof based upon Savicky’s
symmetric bents and the recent work on gbents)

kkkkkkkkhkkkhkkhkhkkkhkkhkhhkhkhkkhkhkkhkkkhkkhkkk

m What about balanced and symmetric generalized Boolean
functions (k > 1)?
m Theorem (2017): NO! (hard to show — dio. eq.)

m Recall X(d,n) =32 j,c..cj, Xi X~ Xyt

Theorem (Cusick-Li-S., 2009)

L Ift, ¢ are positive integers, then X(2!,2!+1¢ — 1) is balanced.

PS
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Trade-offs for generalized Boolean functions Il

m We conjectured that these are the only balanced
elementary symmetric (many cases covered, but still
= open);
& m (Cusick-Li-S. 2009):
v m Ifd=2"+1, n=204", then wt(X(2! + 1,2tt1¢)) = 272,
' m If d = 2%, X(d, n) is balanced iff n =240 — 1, t ¢ € Z7;
mlfd=24"04r—1,6>00<r<2tt! 2l < g <2ttt _2
even, then X(d, n) is not balanced:;
m (Ou—-Zhao 2012): Let
d= 2t+W(23+1 —1),n= 2t+w+1(23+1 e 2tq +m,
b m € {—1,0}. Under some assumption on t, w, s, g, then
7‘1 X(d, n) is not balanced.
‘ 5
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Trade-offs for generalized Boolean functions |l

m (Castro-Medina 2011) & (Guo-Gao-Zhao 2015):
Conjecture 1 is true if nis large enough (dependent upon
the degree), n > —2 (log, cos(m/2")) ", where
2'-1 < d < 2'. In particular, if d is not a power of 2,

X(d, n) is not balanced for large n.

m (Su-Tang-Pott 2013): If d = 2!, Conjecture 2 holds in most
cases, that is, wi(X(d, n)) < 2" 1;

m (Gao-Liu- Zhang 2015): If n =211/ — 1, ¢ odd, 2t+' /d,
X(d,n) balancediff d =2k, 1 < k < t;

i m (Castro-Gonzales-Medina 2015): More open cases are

) covered where Conjecture 1 holds.
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Bisecting binomial coefficients |

m The existence of balanced elementary symmetric
polynomials is related to the problem of bisecting binomial
coefficients, that is, solutions of

ZH:XIC) =0, xe{-1,1}. (1)

i=0

m Trivial Solutions: Obviously, if nis even, then

+(1,-1,...,—1,1) are two solutions of (1). If nis odd,

then (éo,...,0n-1,—0n-1_4,...,—0p) are 2" solutions of
2 2

(1)

Research Question (Open for the past 25 years)




Bisecting binomial coefficients |l

m There are sporadic cases when non-trivial solutions do
appear: e.g., if n=2 (mod 6), since
% ((n+q')/3) = ((n+1§)/3—1) + (n—((n+r1])/3—1))’ nontrivial
5 ‘ solutions always appear.
m Apart from this, all that was known about the bisection of

binomial coefficients was mostly computational.
m (Mitchell, 1990): found the nontrivial solutions for n = 8, 13;

m (Cusick & Li, 2005): found all solutions of (1) when n < 28;
nontrivial solutions exist iff n = 8,13, 14, 20, 24, 26.

- m (lonascu-Martinsen-S., 2017): found all nontrivial solutions

ik for n < 51.
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Our approach on the problem |

m The binomial coefficients bisection can be thought of as a
i subset sum problem. The view we take is the following: a
i binomial coefficients bisection 3";, (7) = 327 (7) will
generate a solution to the Boolean equation

n
Zx,-<7> =21 x;€{0,1}

i=0

by taking x; = 1 for i € / and x; = 0, for i € I. Certainly, the
i reciprocal is true, as well, and so, we have an equivalence
7‘1 between these two problems.
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Our approach on the problem Il

m In general, given a set of positive integers A = {ay, ..., an}
and b < %Z, a;j, b € N, one investigates the Boolean
equation

N
> xiai=b, x €{0,1},

i=1
m The advantage of our approach is that these equations

were studied before by analytical number theory methods
and much (well, some) is known.

m In general, these problem are well known to be
NP-complete [Garey—Johnson, 1979] and have many
. applications in cryptography, such as the Merkle-Hellman
e cryptosystem (1978). (’



Our approach on the problem Il

N

lo max a;
g2 1<I<N I

m The density of S = {ay,...,an} is d(S) =

in terms of knapsack cryptosystems,
d(S) bit size of the plaintext

- average bit size of the ciphertext
m ForP,={(3),(}),-.-.(})}, using

Ln/2) i
ZGI/W < (|n2)) < 417/, the density becomes

n+1 n+1 _ n+1 L n+1

2|n/2] —logy(2|n/2] + 1) < d(Pn) = log, (max; (7)) " log, (Ln,/72j) = 2|n/2)’
7‘1 and so,
o d(P,) — 1, as n — cc. i)

i



Our approach on the problem IV

m Lagarias and Odlyzko (1985) showed that almost all the

"j subset sum problem with density d < 0.6463. .. can be

e solved in polynomial time with a single call to an oracle that

. can find (in polynomial time with high probability) the
shortest vector in a special lattice. Coster et al. (1992)

'& improved the bound to d < 0.9408.. ..

m Since for binomial coefficients, the density is d = 1 (as
n — o0), none of these methods are applicable.
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The underlying method |

m We recall here the following important result of

Freiman (1980) (see also [Buzytsky (1982), Chaimovich,
Freiman, Galil (1989)]).

Theorem (Freiman)

LetA={ai,a,...,an} and b < 3 "N . a;. The number of
Boolean solutions for the equation

N
Za,-x,- = b, X € {0,1}
i=1

1 N )
is precisely / Caaad || (1 i eZW’X%') dx.
0 )
J=1




The underlying method |l

m Applying Freiman’s paradigm to the bisection of bin. coeff.:

Theorem (lonascu-Martinsen-S., 2017)

The number of binomial coefficients bisections for fixed n is
exactly

1 n
Jp= / e‘zn”’XH (1 + ez’”x( ) dx =2t / Hcos (nx )) dx.
0

{ i

m We constructed infinite families with nontrivial, as well as
infinite families with only trivial bisections.

m As a by-product, we got for free two conjectures of Cusick
et al. ('05), so there are only four symmetric SAC(k)
functions for infinitely many n.




Visualizing Boolean functions

m Can one visualize Boolean functions?

m Yes, in several ways, but it becomes very hard to obtain
results just based upon graph theoretical tools.

m Nagy graphs, Cayley graphs, etc.

m E.g.: (undirected) Cayley graph — vertices are points of F7]
and two points x, y are connected by an edge iff
f(xoy)=1.
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Cayley graph of first row of S-box 1 of DES




Further Restrictions: invariance under a group of

transformations

m On F$, there are 220 cubic homogeneous B.f.
m Among these, 3 30 homogeneous bent B.f. equivalent to
Rothaus ('76): x1X2X3 B X1 X4 B XoXs5 & X3Xg
= Qu-Seberry-Pieprzyk (2000): There are > 30"(%)
homogeneous bent B.f. on FS".
m Charnes-Rétteler-Beth (2002):
The bent functions found by Qu et al. ('00) arise as
invariants under the action of the symmetric group on four
letters;

Definition (Nagy Graph)

[(nk): vertices —the (i) unordered subsets of size k of
{1,..., n}; vertices are joined by an edge whenever the




Nagy graph F(6?3)

{4,5.6 {1.2.3} 11,2,4}

{1,2,5}
{3,5,6}
B (.28
{3,4,6}
{1,3,4}
{3,4,5}

{1,3,5}

4
{27 5’ é%
{1,3,6}

{2,4,6 R ‘ ‘
L (PR3 .(
T X ‘
gt {2,4,5} N {1,4,5}
TF“‘ u.<‘ AKX
Ko {2,361 TN =
b 7~ {1,4,6} N5s]

ﬁ 285 34y (1,56 ‘v
b




Cliques and Homogeneous Bent Functions

m A clique in an undirected graph I' is a complete subgraph
(maximal: not contained in a bigger one); the clique
problem) is NP-complete.

} {1,2.3} 2 {2,4,5}
o
1 4
5 3
{1,5,6] 6 {3,4,6}

ptmmn.

Theorem (Charnes-Rétteler-Beth (2002))

| w The thirty homogeneous bent functions in six variables listed by s
ﬁ Qu et al. are in one to one correspondence with the Y
e complements of the 30 (maximal) clioues of I /z ay.




Open questions

m It is unknown whether there are quartic/quintic/etc.
homogeneous bent functions.

] m | propose to look at the complements of the maximal
cliques of the Nagy graph I"(10.4), ['(12,4)-

m Do the same for F(1275), I'(14’5).

Research Question

Can one find efficiently a (all) clique(s) in T 2p k), k < n?

m Not a trivial matter, | believe: for instance, (10 4) has 210
vertices; I'(125) has 792 vertices;
- b7




Having some fun: using a gen. Boolean as a combiner
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